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Abstract

Structured specifications are a common technique for achieving data
encapsulation via modularity, both in computer science and in mathemat-
ics. Such specifications are constructed from basic ones through high-level
operations, among which the most important ones are union, instantia-
tion of parametric specifications and hiding. Our setting is that of logical
frameworks, which are tools for specifying deductive systems. Specifically,
we work in the proof-theoretical LF language, based on dependent type
theory and for which a module system has recently been developed. The
LF module system is based on signature morphisms and provides the
structuring primitives of union and instantiation. We aim at extending
the language such that it also supports hiding. The problem is partic-
ularly challenging, since hiding is a difficult operation to realize, given
that it doesn’t allow for as good of a specification decomposition as do
other structuring operations. Moreover, existing languages with hiding
have a model-theoretic semantics, while we need to introduce the op-
eration at a proof-theoretic level. We propose an extension to the LF
language with hiding and give its semantics, formally defining this struc-
turing concept and the induced application of partial morphisms. We
evaluate the resulting language against a series of benchmark cases, dis-
cussing the newly achieved expressivity, possible applications and future
improvements. Even though our definitions and results are based on LF,
they can easily be extended to other type theories.
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1 Introduction
Given the present computing ubiquity, our dependence on software has increased
dramatically, making it necessary to ensure the reliability and robustness of
computer systems. To this extent, formal methods have been introduced,
in order to systematically and rigorously study software development. More
specifically, such methods are based on mathematical techniques and can be
applied, on the one hand, to a specification language, in order to describe a
system’s behavior, and, on the other hand, to a verification process, in order to
validate the given specification against reality. Automated verification requires
machine readability and, thus, the use of formal specifications. Also, since
the intricacy of certain systems is reflected by their specification, dealing with
such complex cases, commands the use of structured specifications, which
allow for scalability. We focus on the Edinburgh Logical Framework LF, which
is a meta-language for specifying logics and for which a module system has been
developed. In this setting, we aim to extend LF, with the hiding operation.

This thesis is organized as follows. In Section 2, we give an overview of
formal specification languages, such as OBJ, CASL, and Development Graphs.
Next, in Section 3, we introduce the concept of logical frameworks through
the Edinburgh Logical Framework LF. In Section 4, we present the proposed
extended LF grammar and partial signature morphisms. Our main result can be
summarized as follows: partial morphisms preserve typing, whenever defined.
In Section 5 we analyze a series of benchmarks, discuss their solutions and
the extent to which they are supported by our current setup. We summarize
our results, outline possible applications, future improvements and present our
conclusions in Section 6.

2 Related Work

2.1 Formal Specifications
The initial step in using formal methods in system implementation development
is designing the system’s specification, which provides a description of the prob-
lem that needs to be solved. While there are numerous informal and semi-formal
means of writing specifications, such as using natural language, notations, di-
agrams or languages like UML [Bur97] or OCL [WK99], their poor semantics
makes reasoning and inference based on them unfeasible. Consequently, for-
mal specification languages have been introduced to provide a higher level of
abstraction and accuracy, with strong underlying semantics.

A formal specification is a mathematical description of a program’s proper-
ties and can be designed using various methods based on logic, e.g the specifica-
tion language Z [Spi88] is based on Zermelo-Fraenkel set theory and First Order
Logic. Among these methods are the model-oriented approach, better suited for
the description of state based systems and the algebraic approach, better suited
for abstract datatype specifications.
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The model-oriented approach treats the system as a mathematical model
characterized by a state space and certain operations, which describe the sys-
tem’s behavior. For example, typical VDM-SL (Vienna Development Method
Specification Language) [Daw91] or Z specifications have a state space consisting
of a set of variables, whose value changes correspond to certain events, reflecting
the system’s behavior.

The algebraic approach specifies systems using methods from abstract alge-
bra and category theory. Algebraic specification languages are procedural and
facilitate stand-alone specifications. To this extent, these languages are part of
the set-theory based group of module systems, which are systems constructed
using self-contained components. In the case of such specification languages,
the behavior of the system is described by a set of so called characterizing op-
erations whose meaning is given by a set of (equational) axioms formalizing the
relations between them.

In writing large specifications, it is more convenient to design them using
a structural approach of combining and modifying smaller specifications. This
supports modular decomposition, enabling distributed development, i.e a divide-
and-conquer approach to defining a system’s components. This is needed due
to scalability reasons, given that a complex system usually contains numerous
functions and axioms, which become hard to manage when defined using a
simple basic specification.

Such basic specifications are of the form: Sp = 〈Γ, Ax〉, where Γ is a signa-
ture, i.e set of symbols and Ax is a set of axioms over the signature, i.e a set
formulae from wff (Γ, V ar). Its semantics is given by the class of all models
(possible implementations) that satisfy the axioms. Structured specifications
are obtained from basic specifications via structuring operations such as union,
extension, translation and hiding.

OBJ

The pioneer example of an algebraic specification language is the OBJ [GWM+93]
family of languages, developed in the 1970’s. It is based on the Clear program-
ming language, which structures specifications through methods independent of
the underlying syntax, i.e of the institution in which the specifications are ex-
pressed. Thus, the system allows for modular specifications, which are generic
over formalisms. This feature was extended by OBJ and led to the relativization
of algebraic specifications over any logic [DFI+].

CASL

A recent algebraic specification formalisms is given by the Common Algebraic
Specification Language (CASL) [CoF04]. It has been developed as part of the
Common Framework Initiative (CoFI), in order to unify the multitude of ex-
isting algebraic specification languages and to define a standard. CASL con-
sists of several layers of modules called specifications, including basic or un-
structured specifications, which can be combined through various mechanisms,
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among which are unions, extensions, translations, hiding and reductions, in
order to obtain structured specifications. Specifications can thus be united, ex-
tended with further signature items, their models may be restricted to initial
models and their signatures may be translated to use different symbols through
signature morphisms or may be partially hidden.

Development Graphs

The development graph language is a modular language used to encode struc-
tured specifications in various phases of program development ([MAH06], [AHMS99]).
Its modules are theories and represent nodes in the graph, such that the leaves
correspond to basic specifications, which do not use other theories and inner
nodes correspond to structured specifications, which use existing theories to de-
rive new ones. The links in the graph define how theories are used inside other
theories and are of two types: definitional links, representing module imports
and theorem links, representing proof obligations.

Hiding is done via hiding definitional links, which are similar to global
definition links – directed links that import the whole subgraph below a node
– with the addition that one can hide symbols of the signature. The hiding
operation from a node N to a node M , M σ−→

h
N is denoted by a signature

morphism of the form σ : ΣN → ΣM that goes against the direction of the link.

2.2 The Hiding Operation
The concept of information hiding was developed by one of the pioneers of
Software Engineering, David Parnas, and is acclaimed as one of the key prin-
ciples of the discipline [Par72]. Information hiding is used to mask irrelevant
(uncommon/unshared) data information details from a given level of implemen-
tation at a lower one. Thus, it allows for a better structuring of information
distribution, serving as a major method for achieving data encapsulation via
modularity. Also, the operation allows for reusability of proofs and handling of
untranslatable theory fragments.

Moreover, hiding is not only important in software engineering, but also in
algebraic specifications, where, as seen above, it is used as a building operation.
In this case, hiding is also motivated on theoretical grounds, due to the lim-
itations of algebraic specifications. Specifically, it has been proven that some
Σ-algebras cannot be specified as initial Σ-algebras over a finite Σ-equation set
([Maj77]), but that all computable Σ-algebras can be specified as restrictions
of an initial Σ

′
-algebra over a finite Σ

′
-equation set, for some finite Σ

′ ⊃ Σ
([BT95],[MG85],[Ros04]).

As a motivational example, we refer to the method used for specifying the
natural numbers in the first order framework CASL. We specify the natural
numbers HNat, through the Peano axioms, which belong to First Order Logic,
except for the fifth one, the induction axiom, which uses quantification over
predicates and is thus only specifiable in Higher Order Logic. In order to be able
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to still specify the naturals in CASL (i.e. in First Order Logic), one would be
forced to hide the higher order induction axiom, i.e hiding along HOL2FOL.1

spec HNat =
sort N;
ops 0 : N;

succ : N → N;

axioms ∀x.¬ succ(x)
.
= x

∀x.¬ succ(x)
.
= 0

∀x∀y.¬(x
.
= y) ⇒ ¬(succ(x)

.
= succ(y))

∀2P. (P(0) ∧ ∀n : HNat.P(n) ⇒ P(succ(n))) ⇒ ∀n : HNat.P(n)

Higher Order Nat (HNat)

First Order “Nat” (FNat)

hide HOL2FOL

3 Logical Frameworks: LF
Logical frameworks are a tool for specifying logical systems. They consist of a
meta-langage and a description of both the class of logics to be represented and
of the mechanisms used to this extent. The motivation behind developing such
logical frameworks can be identified as two-fold.

At a theoretical level, logical frameworks provide a formal basis for describing
logical reasoning. This attempt to define logic is an especially valuable insight,
given the foundational crisis in mathematics, which has placed logic at the basis
of research in both mathematics and computer science.

At a practical level, such logical frameworks constitute a suitable environ-
ment for developing reliable and powerful formal verification tools, since they al-
low for logic-independent proof development. One such example is Z-in-Isabelle
[SKS02, KB95], which is an embedding of the specification language Z and a
deductive system for Z in the generic theorem prover Isabelle.

Logical frameworks can be set-theoretical, based on Tarski’s view of conse-
quence and characterizing logics model theoretically or type-theoretical based
on the Curry-Howard isomorphism, characterizing logics proof theoretically.
The former are exemplified by institutions [GB92, GR01] and General Logics
[Mes89], while the latter by Automath [dB70], Isabelle [Pau94] and the Edin-
burgh Logical Framework LF ([HHP93]). An overview is given in [HR09].

The latter example, LF, is a corner of the λ-cube obtained by adding depen-
dent types to the typed λ-calculus. The resulting λΠ-calculus consists of simply
typed terms, types and kinded type families. Since LF is a type theory, objects
s and types S are related via the typing judgment s : S. Also, following the
Curry-Howard isomorphism, LF represents all object language judgements as
types and proofs as terms.

Recently, a module system for the Twelf implementation of LF was de-
veloped [RS09]. An outline of the syntax of the module system is given below,

1Still, to properly represent the naturals in FOL, one needs a weakened version of induction.
One approach, discussed in Section 4, is the axiomatization of inductive higher-order theorems,
that are still representable in FOL
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omitting details which are irrelevant for the purposes of this paper. The module
system has modules Γ, whose primitive concepts are signatures and signature
morphisms. Σ is the body of a signature and contains constant and structure
declarations. Signature morphisms define mappings between signatures and
are distinguishable into structures, which copy and instantiate a signature into
another and views which provide translations between signatures. Drawing a
parallel to Development Graphs (see Section 2), we can consider structures
as definitional theory morphisms and views as postulated theory morphisms.
Also, notice that we merge the categories of kinds, types and objects into that
of terms.
Signature body : Σ ::= . | Σ , c : E | Σ , c : E = e

| Σ , %struct s : S = { σ } .
Assignments : σ ::= . | σ , c := E .
Module : Γ ::= . | Γ , T = { Σ } | Γ , v : T → T = { σ } .
Expres s ions : E ::= c | x | type | E E | λx : E . e | Πx : E .E .

Important operations in LF are function type and term constructions. Thus,
given types S and S′, the type S → S′ is the type of functions from S to S′ and,
if t : S′ with free variable x : S, then λx :St is the function of type S → S′,
which returns for s : S, the substitution s for x in t: t[x/s]. LF also allows for
operations such as signature translations, union, views. As stated previously,
this paper sets to investigate solutions to extending LF with hiding.

The semantics of the modular LF is given by elaboration to non-modular
syntax, i.e through flattening. To illustrate this, consider the example of signa-
ture definitions given below:
Normal :
%sig S = {a : type . b : type = a.}. %% Symbol i ca l ly equal e lements
%sig T = {%struct s : S = {}.}. %% Inc lude in enve lope s i g .

E laborates to :
%sig T = {s.a : type . s.b : type = s.a.}. %% Expand to p r im i t i v e s

4 Hiding in LF
Even though LF is not a logic, given that it does not have formulas or con-
sequence relation between them, it nevertheless has a semantics, as does every
type theory. Analogous to logics, the semantics of LF can be defined from
both a proof-theoretical and a model-theoretical perspective, the type/proof-
theoretical semantics being the one primarily used.

Depending on which approach to defining semantics we chose, introducing
hiding can become a challenging task. More precisely, in the model-theoretic
case, the semantics is given by the models and, hence, removing (hiding) dec-
larations does not change the structure of the theory, but only how it refers to
such declarations. However, the proof-theoretic case is problematic, since there
are no models and the semantics is given by the typing well-formedness. Hence,
we cannot apply hiding directly, since the operation would change the objects
themselves, hiding entire expressions and not just their names, as it would in
the previous case.
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4.1 Syntax
Grammar We aim at extending the initial LF grammar with the minimum
non-invasive number of primitives, such that we can preserve previous results.
We manage to do so by only modifying the assignments with the additional hide
c construct, which allows for a higher degree of generality, since the objects we
work with, given in the signature, remain unchanged.
Signature : Σ ::= . | Σ , c : E | Σ , c : E = E
Assignments : σ ::= . | σ , c := E | σ , h ide c
Express ions : E ::= c | x | type | E E | λx : E .E | Πx : E .E

Strict Morphism Application Syntactically, we add hiding in LF by al-
lowing morphisms to be partial. Hence, instead of an assignment c := E, a
morphism may contain hide c, in which case we write σ(c) = ⊥. Then, the
semantics of σ is the homomorphic extension to a partial mapping.

Hence, assuming a signature morphism σ, we define σ(−)
L
as:

σLaux(type) = type

σLaux(λx : E.F ) = λx : σLaux(E).σLaux(F )
σLaux(Πx : E.F ) = Πx : σLaux(E).σLaux(F )
σLaux(E F ) = σLaux(E) σLaux(F )
σLaux(x : E) = x : σLaux(E)

σLaux(c) =

{
E if c := E in σ
⊥ if hide c in σ

σLaux(.) = .

σLaux(Γ, x : E) = σL(Γ), x : σL(E).

σL(E) =

{
σLaux(E) if ⊥ 6∈ σLaux(E)
⊥ otherwise

4.2 Typing

Inference System We keep the original LF judgement system for signature
morphisms, contexts, substitutions and terms, An extension is necessary to the
morphism judgements, in order to incorporate the hide c constructor and the ⊥
constants, allowing for complete and constraint hiding, as discussed in Section 5.
In particular, decmap and defmapf are the same as their counterparts in the LF
judgement system, as they govern the well-defined cases.

7



sigempty
` ·

` Σ
mapempty

` · : · → Σ

` Σ c 6∈ Σ · `Σ E ∈ {type, kind}
dec

` Σ, c : E

` Σ c 6∈ Σ `Σ E2 : E1
def

` Σ, c : E1 = E2

` σ : Σ→ Σ′ · `Σ′ E′ : σ(E) 6= ⊥
decmap

` σ, c := E′ : Σ, c : E → Σ′
` σ : Σ→ Σ′ σ(E) 6= ⊥ σ(E′) 6= ⊥

defmapforced
` σ, c := σ(E′) : Σ, c : E = E′ → Σ′

σ(E) 6= ⊥ ` σ : Σ→ Σ′
dechide

` σ, hide c : Σ, c : E → Σ′
` σ : Σ→ Σ′

defhide
` σ, hide c : Σ, c : E = E′ → Σ′

` σ : Σ→ Σ′ σ(E) = ⊥
dechideforced

` σ, hide c : Σ, c : E → Σ′
` σ : Σ→ Σ′ σ(E) = ⊥

defhideforced
` σ, c := σ(E′) : Σ, c : E = E′ → Σ′

` σ : Σ→ Σ′ σ(E) 6= ⊥ = σ(E′) · `Σ′ E′′ : σ(E)
defmap

` σ, c := E′′ : Σ, c : E = E′ → Σ′

` Σ
conempty

`Σ ·

`Σ Γ Γ `Σ E : type
condec

`Σ Γ, x : E

`Σ Γ′
subsempty

`Σ · : · → Γ′
`Σ γ : Γ→ Γ′ Γ′ `Σ t : γ(E)

subsdec
`Σ γ, x/t : Γ, x : E → Γ′

c : E [ = E′ ] ∈ Σ `Σ Γ
termcon

Γ `Σ c : E

x : E ∈ Γ `Σ Γ
termvar

Γ `Σ x : E

The base cases are given by sigempty and mapempty. The dec and def rules
specify the cases for extending a signature with a constant with, respectively
without, a definition. Also, decmap and defmapforced handle the cases for map-
ping a constant with, respectively without, a definition, in the normal setting,
in which hiding does not occur. Next, dechide and defhide give the rules for hid-
ing a constant with, respectively without, a definition. Similarly, dechideforced
and defhideforced treat the same cases with the added strictness restriction that
the type of the constants is hidden. The most interesting rule is defmap, as it
postulates that a constant with a non-hidden type can be mapped to a target
expression, even if the definition of the constant is hidden.

Note that we are omitting the rules for typing non-atomic terms and the
rules for equality of terms.
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Type Preservation

Lemma. Given Γ `Σ E : F and ` σ : Σ→ Σ′, such that σL(E) 6= ⊥ 6= σL(F )
and ⊥ 6∈ σLaux(E), ⊥ 6∈ σLaux(F ), the following hold:

• Type preservation: σL(Γ) `Σ′ σL(E) : σL(F ).

• Equality preservation: σL(Γ) `Σ′ σL(E) = σL(F ).

Proof: We prove type preservation. Equality preservation follows similarly.

We proceed by induction on the derivation of Γ ` E : F .

• 1.1 constants

Given Γ `Σ c : E and ` σ : Σ → Σ′, we aim to prove σL(Γ) `Σ′ σL(c) :
σL(E), where σL(c) 6= ⊥ 6= σL(E).

We can either have c : E in Σ or c : E = E′ in Σ (by termcon).

In the first case, c : E in Σ, since σL(c) 6= ⊥, it follows that hide c is
not in σ. Hence, only the decmap rule may have been applied to derive
` σ : Σ→ Σ′, where c := E′ in σ. As a result, we get that · `Σ′ E′ : σL(E),
which is the same as · `Σ′ σL(c) : σL(E). From this, we can conclude by
weakening, that: σL(Γ) `Σ′ σL(c) : σL(E).

In the second case, c : E = E′ in Σ. Since σL(E) 6= ⊥ ⇒ σL(c) 6= ⊥
and hide c is not in σ. Therefore, defhideforced was not applied to derive
` σ : Σ → Σ′. If σL(E′) = ⊥, then, according to defmap, c := E′′ in σ,
we have that E′′ : σ(E) and, as above, we can conclude that σL(Γ) `Σ′

σL(c) : σL(E).

If σL(E′) 6= ⊥, then defmapforced, c := σ(E′) in σ, must have been
applied. From def we get `Σ E′ : E and hence that σL(E′) : σL(E).
Applying weakening and the induction hypothesis we obtain what had to
be proven.

• 1.2 variables

Given Γ `Σ x : F , by LF, we have that x : E in σ and according to the
morphism application rules, x : σ(E) in σ(Γ). Since σL(E) 6= ⊥, by LF,
we have that `Σ′ x : σ(E)

• 1.3 ./types

Given σ : Σ → Σ′, we know that: σLaux(·) = ·, σLaux(type) = type, which
trivially implies type preservation, since σLaux is the identity morphism in
these cases.

• 2.1 λ-abstraction

Assume Γ `Σ λx : E.E′ : Πx : E.E′′, where we know that σL(λx : E.E′) 6=
⊥, σL(Πx : E.E′′) 6= ⊥.
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By LF, we have that Γ, x : E `Σ E′ : E′′. If ⊥ 6∈ σLaux(λx : E.E′), ⊥ 6∈
σLaux(Πx : E.E′′), then also ⊥ 6∈ σLaux(E), ⊥ 6∈ σLaux(E′), ⊥ 6∈ σLaux(E′′).
Thus, by the induction hypothesis, σL(Γ), x : σL(E) `Σ′ σL(E′) : σL(E′′)
and, by λ-abstraction, we have that: σL(Γ) ` λx : σL(E) : σL(E′) : Πx :
σL(E) : σL(E′′).

• 2.2 Π-abstraction

Analogous to case 2.1.

• 2.3 term application

We know that: Γ `Σ E : Πx : A.B, Γ `Σ E′ : A. Assuming we have: ⊥ 6∈
σL(EE′), ⊥ 6∈ σL(B[x/E′]), we want to prove that σL(Γ) `Σ′ σL(EE′) :
σL(B[x/E′]). From ⊥ 6∈ σL(EE′), we have ⊥ 6∈ σL(E) and ⊥ 6∈ σL(E′).
To show that σ(Γ) `Σ σ(E) : σ(Πx : A.B) and σ(Γ) `Σ σ(E′) : σ(A),
in order to apply the induction hypothesis, we need to make sure that
⊥ 6∈ σL(E), ⊥ 6∈ σL(E′), ⊥ 6∈ σL(A), ⊥ 6∈ σL(Πx : A.B). We have
ensured the first two conditions previously, so only the latter remain to
be proven. Since ⊥ 6∈ σL(x), ⊥ 6∈ σL(E), then ⊥ 6∈ σL(B). Hence,
using this result, if we are able to show ⊥ 6∈ σL(A), we can conclude
⊥ 6∈ σL(Πx : A.B).

– ⊥ 6∈ σL(A), then we can safely apply the induction hypothesis to
obtain the desired result σ(Γ) `Σ′ σL(EE′) : σL(B[x/E′]).

– ⊥ ∈ σL(A): Handled by the below Theorem.

• 2.4 context

Given `Σ Γ, σL : Σ → Σ′, we have σL(Γ, x : E) = σL(Γ), x : σL(E). By
induction hypothesis, σL is type preserving on lengths of derivation less
or equal to k and we also have that x : σL(E) is equivalent to the base
case 1.2, hence type-preserving, q.e.d.

Morphism Application with Normalization In order to define the mor-
phism application with normalization, let us consider the following extended
signature and morphism:

Σ̃′ = Σ′, ⊥c : σ(A), for every c : A in Σ, with hide c in σ, in the order of Σ

σ̃ : Σ→ Σ̃′ = σ, c := ⊥c\{hide c}, if hide c in σ

Hence, σ̃ is defined to be the same as σ, but replacing the hide constructors
with well-typed ⊥ symbols, extending the target signature respectively.

Thus, the resulting morphism application is similar to that of the strict
morphism application:
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σaux(type) = type

σaux(λx : E.F ) = λx : σaux(E).σaux(F )
σaux(Πx : E.F ) = Πx : σaux(E).σaux(F )
σaux(E F ) = σaux(E) σaux(F )
σaux(x : E) = x : σaux(E)

σaux(c) =

{
E if c := E in σ̃
⊥c if hide c in σ̃

σaux(.) = .

σaux(Γ, x : E) = σ(Γ), x : σ(E).

σ(E) =



σaux(E′E′′)βη if E = E′E′′,⊥ 6∈ σaux(E),⊥ ∈ σaux(A), E′′ : A,
⊥ 6∈ σaux(E)βη,⊥ 6∈ σaux(F )βη, E : F

σaux(E) ⊥ 6∈ σaux(E), E : E′

σaux(E)βη otherwise ,⊥ 6∈ σaux(E)βη,⊥ 6∈ σaux(F )βη, E : F
⊥ otherwise

Note that we assign to ⊥ the union of all defined typed ⊥ symbols, i.e.
⊥ =

⋃
T :type∈Σ′

⊥T

In the morphism application for expressions, we start with a particular rule,
that for term application, motivated as a supplement to the case of the Lemma
considering λ and Π abstraction with ⊥ in the type of the bound variable.

The imposed conditions for the morphism are reasonable, because they com-
bine the lemma conditions: ⊥ 6∈ σaux(E),⊥ ∈ σaux(A),where E′′ : A and the
βη normalization conditions: ⊥ 6∈ σaux(E)βη,⊥ 6∈ σaux(F )βη,where E : F

Theorem. Given Γ `Σ E : F and ` σ : Σ → Σ′, such that σ(E) 6= ⊥ 6= σ(F ),
the following hold:

• Type preservation: σ(Γ) `Σ′ σ(E) : σ(F ).

• Equality preservation: σ(Γ) `Σ′ σ(E) = σ(F ).

Proof: We prove type preservation. Equality preservation follows similarly.

Given `Σ E : F , such that σ(E) 6= ⊥ 6= σ(F ), we analyze the cases:

• If ⊥ 6∈ σaux(E) and ⊥ 6∈ σaux(F ), then we have the following:

– E 6= E′E′′, then σaux = σLaux and according to the above proven
lemma, we can conclude that: σ(Γ) `Σ′ σ(E) : σ(F ).
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– E = E′E′′, where E′ : Πx : A.B, E′′ : A.
If ⊥ 6∈ σaux(A), then the result holds by the above proven lemma.

Let us now consider the case that ⊥ ∈ σaux(A). We know from the
premises that ⊥ 6∈ σaux(E), hence ⊥ 6∈ σaux(E′E′′). According to
the morphism application, σaux(E′E′′) = σaux(E′)σaux(E′′), and,
from the previous result, we get: ⊥ 6∈ σaux(E′) and ⊥ 6∈ σaux(E′′)
(1). Since E′ : Πx : A.B, E′′ : A, then E′E′′ : B[x/E′′]. From this
and the premises that ⊥ 6∈ σaux(F ), we have that ⊥ 6∈ σaux(B[x/E′′])
(2). From (1), (2) and the fact that ⊥ 6∈ σaux(x) = x, we get: ⊥ 6∈
σaux(B). From σaux(E′) : Πx : ⊥A.σaux(B) and σaux(E′′) : ⊥A, by
β-reduction, we have that: σaux(E′E′′)β = (σaux(E′)σaux(E′′))β :
σaux(B)[x/σaux(E′′)].
By LF, we know `Σ̃′ σaux(E′E′′) : σaux(B[x/E′′]), since Σ̃′ con-
tains well-typed ⊥ symbols guaranteeing the type preservation of
the morphism translation. Since have shown above that ⊥ does not
appear neither in σaux(E′E′′) nor in σaux(B[x/E′′]), we have that
⊥ is not in the βη normal form. Given that βη-reduction cannot
introduce new base types, it follows that ⊥ 6∈ σaux(E′E′′)βη. By
the type-preservation property of the βη-normalization, we have that
`Σ̃′ σaux(E′E′′)βη : σaux(B[x/E′′])βη. From this we get, by weak-
ening, that `Σ′ σaux(E′E′′) : σaux(B[x/E′′]) and from the definition
of σ, we obtain that `Σ′ σ(E′E′′) : σ(B[x/E′′]) and can conclude by
weakening that σ(Γ) `Σ′ σ(E′E′′) : σ(B[x/E′′]).

Note that whenever the lemma refers to the theorem, the case to which it
refers to terminates via βη normal form. Inversely, whenever the theorem
references the lemma, it refers to some of the recursively expandable cases
that do not immediately refer back to the theorem. While a back reference
is possible, when recursively tracing the induction hypothesis, it will be
on a different expression and, as shown above, such reference would then
terminate in the theorem.

• If ⊥ ∈ in σaux(E) or ⊥ ∈ σaux(F ), then by the definition of σ and the
assumption, we have that there is no ⊥ in σaux(E)β,η or σaux(F )β,η, by
an analogous argument to the one above.

5 Discussion and Future Work
In the following, we present a set of benchmarks, which reveal desirable prop-
erties of the extension of LF with the hiding operation. From them, we have
identified three desirable language features. The first, as seen in the translation
from the typed to the untyped lambda calculus, is complete hiding, which
stands for eliminating unnecessary information, i.e removing expressions. Next,
we will show instances, such as in signature definitions and the first order ax-
iomatization of the naturals, in which constraint hiding would be useful,
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allowing to keep certain structures, by undefining their constraints. Finally, the
encoding of the Curry-Howard isomorphism reveals a situation in which con-
textual hiding, enabling the contextual uncovering of a hidden term, is also
necessary.

Complete hiding can be realized by hiding terms with hidden sub-constructs,
unless the latter are βη-reducible. Constraint hiding can be obtained by remov-
ing the definition of constructs, when they depend on hidden theories, but not
on their type. While these two cases are generally solvable, the last is chal-
lenging, since the context is determined by non-trivial patter-matching, which
is difficult to implement, without relying too much on the ⊥ symbols.

However these distinct features rarely occur isolated, as we also discovered
in our target examples. We will begin by exemplifying such interaction in the
context of the natural numbers.

5.1 Set to Type Theory
A revealing example demonstrating the power and utility of complete hiding
is the morphism between set-theoretical and type-theoretical natural numbers.
Let us consider a definitional introduction of the natural numbers in a set theory
S, represented as the LF signature SNat below. We define zero as the empty
set and the successor function as the one uniting the current set with the set
containing it, i.e 0 : set = ∅. From these we can derive the traditional Peano
axiomatization of the natural numbers as Peano theorems and use them in the
future. The analogous construction of the type theoretical natural numbers,
also represented by an LF signature, namely TNat, is given axiomatically, by
introducing two undefined constants, 0 and succ, and the Peano axioms.

%sig SNat = {
set : type . ∅ : set . 0 : set = ∅ .
∪ : set → set → set . {} : set → set .
succ : set → set = λn.n ∪ {n} .
Peano Theorems .

}

%sig TNat = {
TTNat : type . 0 : TTNat .
succ : TTNat → TTNat .
Peano Axioms .

}

A translation from the type-theoretical naturals TNat to the set-theoretical
naturals SNat can be given as an LF signature morphism, but we need hiding
to give a translation from SNat to TNat. When mapping SNat to TNat, we hide
all the set theoretical symbols, i.e σ(set) = σ(∅) = σ(∪) = ⊥, and assign to the
arithmetical symbols 0 and succ their syntactic equivalent in type theory. LF
then automatically hides the set theoretical definitions of terms in SNat based on
the hide declarations. It is important to observe that such an induced invocation
of constraint hiding, done automatically by LF is a powerful consequence of
the defmap judgement, which allows us to seamlessly integrate complete and
constraint hiding in some cases. This directly relates the two theories effectively
turning the Peano theorems of SNat into the Peano axioms of TNat. Thus, we
manage to hide the low-level symbols, but recover the high-level ones that build
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on top of them. Note that the types and definitions of the latter depend on
the former. Of course, this idea breaks a number of natural assumptions about
morphisms, for example, σ does not preserve equality anymore: We have 0 = ∅
in S, but σ(∅) = ⊥ and σ(0) = 0. But this is exactly what we set out for: 0 can
be interpreted in T , but ∅ cannot.

Once such a morphism σ is defined, the homomorphic extension of σ can
yield for a theorem p : F of S a T -theorem σ(p) : σ(F ). This works if σ is
defined for all constants in p and F . Firstly, σ(F ) is undefined if the formula
F cannot be expressed in S, e.g., if it is the S-theorem 0 ∈ 1; but then we are
typically not interested in translating it to T . Secondly, σ(p) is undefined, if
the proof p refers to axioms or rules of S for which σ is undefined; since σ is
defined for all Peano theorems, it is defined for all proofs that refer only to them.

%view S2T : SNat → TNat = {
hide set . hide ∅ . hide ∪ . hide {} .
0 := TNat.0 .
succ : TNat.succ .
Peano Theorems := TNat.Peano Axioms .

} . Nat

TNat

SNat

S2T

5.2 Typed to Untyped Lambda Calculus
Our next example is given by the translation from typed lambda calculus to
untyped lambda calculus. Typed lambda calculus has a type tp, for base types,
a function type constructor fun, a dependent type tm, for terms of a certain
type, as well as the app and lam constructors, representing term application
and lambda abstraction. The typed term application takes a term of function
type A to B, a term of type A and applies them, producing a term of type
B. Lambda abstraction can be considered an inverse of the term application
operation, taking a term of A going to a term of B in LF and returning a
typed lambda calculus term of the function type A to B. The untyped lambda
calculus has no types, hence there are no typing constructors. However, it still
has the term, application and lambda abstraction constructors, but defined in
an untyped way. Thus, tm becomes atomic, instead of depending on a type
and, respectively, app and lam only depend on tm and are untyped. When
translating from the typed to the untyped lambda calculus, one has to hide
the tp and fun constructors, as well as the type dependence of tm. The term
translation is realized via hiding the type argument of the type family in typed
lambda calculus, which makes it equivalent to the untyped one, i.e a term of type
x, tm x, becomes a generic term tm, as x is completely hidden. The translation
of the application and lambda abstraction constructors is straightforward once
we have translation of terms, since the typed and untyped definitions are the
same modulo types.

Currently, we have allowed for hiding tp and fun and require an extension
to the judgement system that permits the explicit hiding of lambda bound vari-
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ables. While the general case is not supported, any instance of a type A :
tp will be automatically resolved by LF, when in a term application with tm,
namely: tm A : type := tm : type.

Typed λ−c a l c u l u s :
tp : type . %% rep r e s en t types by tp
fun : tp → tp → tp . %% func t i on type cons t ruc to r
tm : tp → type . %% term cons t ruc to r
app : tm ( fun A B) → tm A → tm B. %% term app l i c a t i on
lam : (tm A → tm B) → tm ( fun A B) . %% lambda ab s t r a c t i on

Untyped λ−c a l c u l u s :
tm : type . %% No λ−types , so Twelf pr im i t i v e .
app : tm → tm → tm . %% term app l i c a t i on
lam : (tm → tm) → tm . %% lambda ab s t r a c t i on

Pos s i b l e t r a n s l a t i o n :
hide tp . %% Hide base types
hide fun . %% Hide func t i on types
tm := [ hide a ] tm . %% Ef f e c t : tm a→ tm .
app := [ f : tm ] [ a : tm ] app f a .
lam := [ f : tm → tm ] lam f .

5.3 Curry-Howard translation from Cat to Prop
Our last example is given by the representation of the categorical formulation
of the Curry-Howard isomorphism, which interprets formulas as objects and
proofs as morphisms. We encode the category Cat as a signature having, as
seen in the first example, a base type constructor tp and a type-dependent
term constructor tm. We represent the the categorical concept of an object as
a base type, using the tp constructor. Next, the morphism constructor is en-
coded as taking one object term (its domain, tm obj), another object term (its
codomain) and returning the categorical type of this class of morphisms. As in
every category, we have a class of identity morphisms, consisting of morphism
terms going from an object to itself and the comp morphism composition law,
which, taking a morphism term from A to B and a morphism term from B to
C, returns a morphism term from A to C. The signature of propositional logic
has only two relevant constructs, namely the type of formulas o and the con-
structor ded of deductions/proofs. When translating from Cat to PL, one has to
hide the constructs which do not have a counterpart of equivalent granularity in
PL, according to the Curry-Howard isomorphism, namely: tm, tp, obj and mor,
which are too fine granular. However, according to the Curry-Howard isomor-
phism, an object term (tm obj) is equivalent to a formula via the translation
and, even though tm and obj are hidden, their application needs to be visible.
Analogously, this is also the case when one views morphism as proofs, which
requires the application of tm and mor, (tm mor) to be visible.

For this case we have the hiding mechanism, but we still need to extend the
judgement system to the case that maps expressions o expressions, as opposed
to mapping constants to expressions. In general, we can observe that this prob-
lem can be solved by manually adding to the signature the constants whose
definitions we want to map. Then, an explicit mapping of those new constants
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in the morphism is sufficient. Since this procedure of introducing constant ab-
breviations for arbitrary expressions is generic and at the heart of LF, we can
claim that mapping from expressions to expressions has the same properties as
the mapping from constants to expressions. Also, we can distinguish this situ-
ation where we need to manually reveal expressions consisting of hidden terms,
from that of automatically revealing expressions consisting of terms whose types
are (partially) hidden. For example, hiding the type tp still allows for properly
mapping (tm obj) and (tm mor) to type in PL.
%sig Cat = {

%include DFOL %% Dependently−Typed F i r s t Order Logic
tp : type . %% Make DFOL so r t s Twelf p r im i t i v e s
tm : tp→type . %% Sort−dependent term cons t ruc t i on
obj : tp. %% Objects
mor : tm obj→ tm obj→ tp. %% Morphisms
id : tm (mor AA) . %% Iden t i t y
comp : tm (mor B C)→ tm (mor AB)→ tm (mor AC) %% Composition

%sig PL = {
o : type . %% Formulas
ded : o → type . %% Proofs

} .

5.4 Definition Hiding
Another example of hiding can be given with respect to signature definitions in
Twelf. Recall the example given in Section 4. Let us consider a signature S,
which contains two types a and b and also restricts b definitionally as equal to
a, i.e b can be though of as a “synonym” of a. Taking T to be another signature
with a structure s of type S, we can exhibit hiding by using an %undefine
assignment to mask the symbolic link between a and b in signature S. This is
useful when one explicitly wants to prohibit or shadow the inheritance of certain
constructs in object-oriented programming.
Normal :
%sig S = {a : type . b : type = a.}. %% Symbol i ca l ly equal e lements
%sig T = {%struct s : S = {}.}. %% Inc lude in enve lope s i g .

E laborates to :
%sig T = {s.a : type . s.b : type = s.a.}. %% Expand to p r im i t i v e s

Hiding a d e f i n i t i o n :
%sig S = {a : type . b : type = a.}. %% S as be f o r e
%sig T = {%struct s : S = {%undefine b.}.}. %% Mask equa l i t y

Elaborates to :
%sig T = {s.a : type . s.b : type .}. %% Expand to p r im i t i v e s

In this particular example, both a and b are constants, so the effect of
undefining b can be achieved only via specifying hide a in the import. However,
if one wants to preserve both a and b without their definitions, one would
need to introduce new machinery, e.g an %undefine constant. While LF will
automatically hide definitions that are partially or completely hidden, i.e have
⊥ somewhere in their mapping, it is powerless in this case.
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Let us look at a similar example, in a mathematical setting, by considering
the natural numbers signature HNat given below. As we have seen in the previous
section, in order to fully axiomatize the natural numbers, we need, apart from
other axioms, which we omit, the second order induction axiom, ind. Next, let
us take a proof of some formula F, which uses the ind axiom in its derivation
and name it t. One way of defining the first order natural numbers, given
by the Nat1 signature, would be completely hiding the ind axiom, as seen in
the first example, while an alternative approach, given by the Nat2 signature,
would be hiding ind and undefining t, i.e removing its proof derivation, as seen
in the previous example. As a result, we get two possible elaborations. In
Nat1, hiding ind, consequently leads to hiding t, since the latter builds on the
axiom. Conversely, in Nat2, t elaborates to an axiom, since once its derivation
is undefined, it no longer depends on the axiom ind.

Def in ing the na tu ra l s HNat and the f i r s t order na tu ra l s Nat1 and Nat2 :

%sig HNat = {
ind : proof (. . .) .

t : proof F = (. . . ind . . .).
}.

%sig FNat1 = {%struct n :HNat = {%hide ind }.}.
%sig FNat2 = {%struct n :HNat = {%hide ind .

%undefine t .
}.

}.

Elaborates to :

%sig FNat1 = { } . %% When F i s a rb i t r a r y
%sig FNat2 = { t : proof F} . %% When F i s FOL−e xp r e s s i b l e

Hence, although complete hiding is not too restrictive when we are dealing
with arbitrary formulas, we see that, in the case that such a formula F is FOL-
expressible, the second approach, that of constraint hiding allows us to still be
able to keep the result without its proof. In general, while constraint hiding,
would help increase the system’s flexibility, one might argue on the one hand that
hiding a theorem’s proof renders the result useless, since it cannot be applied
or verified and hence, complete hiding is more adequate. On the other hand, in
some cases one is not interested in the details of a theorem’s proof, but only in
the fact that it is indeed provable and hence, turning such a theorem into an
axiom is a viable solution.

If we were to use the approach of an external morphism between HNat
and FNat, we would need to manually assign any result of interest in HNat to
a predetermined result of interest in FNat, losing any and all benefits in the
approach. That is why we do a structural import of HNat into FNat, moving
the burden of determining which and in what way the HNat terms should be
hidden. By specifying ∀2 and ∃2 as hidden, LF, via its judgement system, can
automatically filter out any nonexpressible fragments, merging the rest with
FNat. For this to work, there is an essential prerequisite that the well-defined
fragments of the structural import must clearly be a subset of the importing
theory.
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6 Conclusion
In the paper we have proposed a solution for the introduction of the hiding
structuring operation in the modular system for the Edinburgh Logical Frame-
work LF, operation which enables removing or ignoring parts of a theory. To
this extent, after introducing the key concepts the paper builds on and giving
an overview of the field, we proceeded to investigate the challenges faced when
trying to solve the problem. We showed that it is necessary to develop a new
language and a new approach, as the existing ones are not applicable in our
case. In order to be able to understand what properties the extended language
should have, we presented a series of benchmarks: the translation from typed to
untyped lambda calculus, the encoding of the natural numbers in the First Or-
der Logic framework CASL and the encoding of the categorical Curry-Howard
isomorphism.

We then identified three desirable features, namely complete hiding, which
eliminates all instances that contain the hidden construct, constraint hiding,
which keeps structures, but undefines their definitions, transforming theorems
into axioms, and contextual hiding, which enables the uncovering of hidden
terms, depending on the context.

We have introduced and proved the expected behavior of complete hiding,
which also granted a related subset of constraint hiding. Our inclusion of the
βη normalizations in the type preservation proof, also grants us a subset of
contextual hiding, in the case in which one hides an entire type.

However, the problem of fully expressing and introducing constraint and
contextual hiding is largely open and seemingly disjoint from the complete hid-
ing machinery. Since we already motivated the need of fully expressing all three
features, we can decisively conclude that this is an important direction of future
work. It remains to be decided what the extent of any change to the signatures
should be, particularly in the case of the ⊥ constant artifacts.

This thesis lays the foundations for solving the hiding problem in LF, setting
a clear cut frame and providing the basis for the remaining extensions. We
open the doors to future applications that were previously impossible due to
their dependence on partial morphisms. The key advantage of our approach
is that we manage to introduce partial views that are preserving typing and,
hence, can constitute the basis of trusted partial translations.

This is particularly relevant, since we are successfully employing the LF
module system to give an atlas of formal languages, such as logics, type theories
and mathematical foundations, as well as the translations between them, in the
LATIN project. One intended application of the LATIN multi graph of formal
languages is to aid system integration in a verified setting, by explicating the
formal languages and the relations underlying the used reasoning systems. We
are thus anticipating the solution to various such system integration problems,
e.g translating from Mizar to Isabelle and back, typed to untyped translations,
as well as higher to first order borrowing of theorems in formal specifications.
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